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Fo rmula s  a re  obtained for  calculat ing the sur face  fr ict ion and heat  exchange at a ve r t i ca l  p o r -  
ous surface  with injection (suction) under  combined convection conditions. 

In the t r a n s f e r  of heat f r o m  a heated surface  to a medium moving around it, fo rced  and f ree  convec -  
tion are  of predominant  impor tance .  Until recent ly ,  theore t ica l  and exper imenta l  invest igat ions on this  
theme were  l imited to the f o r m  of one of the t r a n s f e r  mechan i sms .  It is obvious that heat is t r a n s f e r r e d  
by the two mechan i sms  acting s imultaneously.  Analysis  of the exper imenta l  data in [1] shows that although 
the motion in the exper imen t s  was de te rmined  pr incipal ly  by a forced  cur ren t ,  when compar ing  the i r  r e -  
sults with analyt ical  calculat ions,  and taking account only of forced  convection, the powerful influence of 
f ree  convection can be seen. 

The effect  of buoyancy on forced  convection in the case  of l amina r  flow around a ver t ica l  plate was 
analyzed by Sparrow and Gregg [2]. They showed that the solution for  the boundary l aye r  can be r e p r e -  
sented in the f o r m  of a power s e r i e s  in G r / R e  2, the f i r s t  t e r m  of which is the solution for  pure ly  convective 
flow. In [3], the effect  of buoyancy on forced  convection is cons idered  for  l amina r  flow, and also the e f -  
fect  of forced convection on the pure ly  f ree  motion in the case  of flow around a ve r t i ca l  surface .  Solutions 
a re  obtained by expansion in s e r i e s  of the flow and t e m p e r a t u r e  functions with r e spec t  to the p a r a m e t e r  
G r / R e  2 in the f i r s t  case ,  and with r e s pec t  to the p a r a m e t e r  Re /Gr l / 2  in the case  of t r ea tmen t  of f r ee  con-  
vection. F o r  smal l  va lues  of the defining p a r a m e t e r s ,  p rof i l es  of ve loc i t ies  and t e m p e r a t u r e s ,  shear  
s t r e s s e s  and heat t r a n s f e r  a re  given. The effect  of natural  convection on the f r ic t ional  s t r e s s  for  a gas  
with forced  flow is invest igated also by an approx imate  method [4]. 

The method used in this r epo r t  fo r  invest igat ing the p rob l em posed,  concerning combined convec -  
tion, cons is t s  in the convers ion  of a s y s t em of differential  equations in par t ia l  de r iva t ives  for  a boundary 
l aye r  express ing  the laws of conserva t ion  of m a s s ,  momentum,  and energy,  to ord inary  differential  equa-  
t ions by means  of a s i m i l a r  convers ion  for  specif ied laws of distr ibution of the su r face  t e m p e r a t u r e  and 
flow veloci ty  at the outer  edge of the boundary l aye r .  

The combined convection nea r  a ve r t i ca l  sur face  is  descr ibed  by the s y s t e m  of differential  equations 
of a l amina r  boundary layer .  F o r  direct ional  coincidence of the forced  and f ree  convection and the con-  
stant  p rope r t i e s  of the medium,  with the exception of density,  depending on the t e m p e r a t u r e  in the e x p r e s -  
sion for  the buoyancy and without taking v iscous  dissipat ion into account, the equations have the following 
form:  
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Sur face  f r i c t ion  under  c o m b i n e d  convec t ion  condi t ions  
- ( P r  = 0.7). 

with the boundary condi t ions  

V = 0 :  u - 0 ,  v - v w ,  T - T ~ ,  (2) 

y = o o :  u - - : U , ~ ,  T : : T ~ .  

If we c o n s i d e r  convec t ive  flow and heat  t r a n s f e r  in the boundary  l aye r ,  unde r  condi t ions  which spec i fy  
the ve loc i ty  d is t r ibut ion  in the flow r e m o t e  f r o m  the su r f ace  and the t e m p e r a t u r e  of the su r f ace  

U| = c x  m, 

T~,. -- T=  -'- B.v". (3) 

where  C, 13, m, and n a r e  cons tan t  quant i t ies .  

The p r o b l e m  (1)-(3) r e d u c e s  to a s y s t e m  of two o r d i n a r y  equa t ions  r e l a t ive  to f0?) and 0(7) by the in-  
t roduc t ion  of the flow funct ion 

1F - c.,x~ [ 01) 

and the independent variable 

~] = cltj-v~, 

w h e r e  the quant i t ies  a ,  /3, %, and c 2 a r e  d e t e r m i n e d  in the fol lowing way 

~z --- m . -  1 _ n. ' ; - 3 _  [.} __m--  l _ n - -  1 

2 4 '2 4 

1 , . (Cv)O,a 

Conversion to ord inary  differential  equations is possible under  conditions such that 

n - :  2 m - -  1. 

The s y s t e m  of equat ions  (1) in d i m e n s i o n l e s s  f o r m  is wr i t t en  as  

[ ~- G r o ( q ) ] - - O ,  f ' ( q )  ~- (m- .  1 ) f ( ~ l ) f " ( q )  2m[ "~ (q)-- 8 m , Re'-' 

0"(q) + P r [ ( m _  1) f (q) 0' (q) (4nz--2)[ '  (q)0(q)] : 0  

(4) 

(5) 

(6) 

(7) 

with the boundary  condi t ions  

q = 0: [ '  (0) = 0, f~, = const, 0 = 1, 

~ =  ~:  ['(:,:) =2 ,  0 = o ,  

where  007) = (T-T~) / (Tw-Too)  and the p r i m e  denotes  d i f fe ren t ia t ion  with r e s p e c t  to ~?. This  s y s t e m  conta ins  
the P rand t l  n u m b e r  and A = G r / R e  2 as  p a r a m e t e r s .  The p a r a m e t e r  A defines the ef fec t  of f r ee  convect ion  
on the s u r f a c e  f r i c t ion  and heat  exchange  unde r  combined  convec t ion  condi t ions .  
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Fig. 2. Heat exchange with combined convection CPr = 0.7). 

The sy s t em  of equations (7) is solved numer ica l ly  on a compute r  for  P r  = 0.7; m = 0.5 and n = 0, and 
for  a wide range of the p a r a m e t e r  A in the case  of injection (suction) it is solved in [5]. The r e su l t s  of the 
calculat ions a re  used for  obtaining the c r t t e r i a l  equations. 

The surface  fr ic t ion on a ve r t i ca l  porous  sur face  is de termined by the express ion  [6] 

= ~ ( --PvwU| T w 

which, in t r a n s f o r m e d  va r iab les ,  p e r m i t s  the d imens ionless  eoefftctent  of f r ic t ion to be obtained 

clRel/2 = ~ [ " ( 0 )  q- (m § l)[w, (8) 

where cf = 2rw/(PU~),  and fw = --(2Vw/(m + 1)Uoo)~Re is the injection (suction) p a r a m e t e r .  Based on p r o -  
cess ing  of the r e su l t s  of the numer ica l  calculation,  the fo rmula  

[" (0) = (3~578 -I- 2f154A~ 4- O25fwA0.as), (9) 

is obtained, by means  of which the surface  f r ic t ion in the case  of combined convection and injection (suc- 
t io n) is determined.  F igure  1 shows the r e su l t s  of the calculat ion by fo rmula  (9) for  an impe rmeab le  s u r -  
face (curve 1) and injection (curve 2 for  fw = --0.2). Here  also,  the r e su l t s  of the numer ica l  calculat ion in 
[7] for  an impe rmeab le  sur face  a re  plotted by the points 3. 

The the rma l  flux at the sur face ,  in the case  of combined convection, is de te rmined  by the law 

OT 

Introducing.the d imens ion less  Nussel t  number ,  

N u  o~X_, w h e r e  c~ - -  q , 

~ T w --- T| 

fo r  the local efficiency, we obtain 

1 
Nu . . . .  O' (0) Re I,'~, 

9 (10) 
where 0 '  ( 0 )  is evaluated in [5] for  different va lues  of the defining p a r a m e t e r s  A and fw. 

In o rde r  to calcula te  the heat  exchange in the case  of combined convection, based  on the r e su l t s  of 
the numer ica l  integrat ion of s y s t e m  {TL the c r i t e r i a l  equation 

N u ( ~  t 0.44[~ ~ 0.47 
- -  ~o.-~2i~o.T~T (11) 

is  obtained. 

A compar i son  of the resu l t  of the calculat ion by f o r m u l a  (11) with the exper imenta l  and ca lcula ted  
data of o ther  authors  is  g iven in Fig. 2, where  cu rves  1 and 2 r e p r e s e n t  the heat  exchange when fw = 0 and 
--0.2 respect ive ly ;  3 a re  the ca lcula ted  [7], 4 a r e  the exper imenta l  [3] and 5 a re  the ca lcula ted  data 18] for  
an impermeab le  surface .  
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It is in te res t ing  to note that  in the pape r  by S. Eshgi [8], an approx imate  solution for  mixed convec -  
tion is obtained, defined by the p a r a m e t e r  R e / G r  1/~, when the forced flow affects  the f ree  flow. Thus,  when 
invest igat ing the heat  exchange under  conditions of combined convection, there  a r e  two approaches :  study 
of the effect  of f r ee  motion on the fo rced  convect ion and vice  v e r s a  --  the effect  of the fo rced  flow 0r~ the 
natura l  convection.  However ,  by plotting the r e su l t s  of heat  exchange in the coordinate  s Nu(Re/Gr) l /2  and 
G r / R e  2, both approaches  a r e  sho~,a to be identical,  i . e . ,  when invest igat ing combined convection, the 
study can be r e s t r i c t e d  to only the effect  of f r ee  convect ion on forced  convection.  
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Gr = g/3(Tw-T,o)x3/~, Re = Ux/v,  
P r  = v / a ,  P r  = v / a ,  Nu = ~x/~t 

N O T A T I O N  

a re  the coordinates ;  
a r e  the components  of the veloci ty  along the axes;  
ts the acce le ra t ion  due to gravi ty;  
ts the t empe ra tu r e ;  
ts the k inemat ic  viscosi ty;  
ts the coeff icient  of t he rma l  expansion; 
t s  the coeff icient  of t he rma l  conductivity; 
is the density; 
ts the p r e s s u r e ;  
ts the external  flow velocity;  
ts  the independent var iable ;  
ts the shea r  s t r e s s ;  
ts the coeff ic ient  of t he rma l  conductivity; 
ts the p a r a m e t e r  of the effect  of na tura l  convect ion on forced  con-  
vection; 
is the injection (suction) p a r a m e t e r ;  
is the d imens ion less  t empe ra tu r e ;  

a r e  the Grasshof ,  Reynolds,  Prandt l ,  and Nusse l t  numbers ,  r e -  
spect ively;  

S u b s c r i p t s  

w denotes va lues  at the sur face ;  
~o denotes va lues  at a l a rge  dis tance f r o m  the sur face .  
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